

Selecting Corn Hybrids for Silage

Key Points

- When choosing a corn hybrid for silage, one needs to consider how the silage will be utilized - for either a feedlot, dairy or cow/calf operation.
- The following factors must be taken into consideration when selecting a corn hybrid for silage:
 - · Hybrid maturity, technology traits for insect resistance, agronomic stability, genetic resistance, proven yield potential, starch content, fibre and starch digestibility, and agronomic considerations.

Factors to consider when selecting a corn hybrid for silage:

Hybrid Maturity

- Pick an appropriate maturity to ensure quality and yield are met but that the product is ready in an appropriate harvest window.
- In Canada, maturity is rated in terms of Corn Heat Units (CHU's); i.e., 2100 CHU. CHU is a measure of cumulative heat over the growing season.
- It is recommended to select a silage hybrid that is 100-150 CHU longer than a hybrid grown for grain.

Technology Traits

 Look for hybrids with Insect resistant traits (Qrome[®], Optimum® AcreMax®) and herbicide tolerance traits.

Agronomic Stability

 Stress emergence and drought tolerance, along with stalk and root strength are key attributes for improved standability.

Genetic Resistance

· Genetic resistance to diseases such as Goss' wilt.

Proven Yield Potential

- Biomass yield influenced by plant height and maturity of the ear.
- Starch yield influenced by grain yield of the ear.
- Silage tonnage (dry matter yield) is primarily a function of:
 - Silage harvest timing important because grain (starch) contributes about half of the dry matter yield (and a significant portion of the energy ~65%)
 - Hybrid genetics
 - Planting date

Starch Content

- · Primarily driven by genetics and environment.
- Highest energy component of the corn plant is the kernel.
- · Heavily influenced by harvest maturity of the kernel.
- · Short statured plants generally have high starch energy but may lack overall plant biomass and tonnage.
- · Grain to stover ratio is the biggest factor affecting the energy value of corn silage.
- Generally, the grain to stover ratio (G:S) is 30:70 to 50:50 on a dry matter basis.

Fibre and Starch Digestibility

- · Starch digestibility is the amount of starch digested in the rumen and the intestines.
- · Starch digestibility is influenced by kernel maturity and the extent of kernel processing. It is optimized 60-90 days post ensiling.
- Fibre digestibility is influenced 3 times more by growing conditions than genetics.
- Fibre digestibility between different hybrids is generally the same when measured at 35% dry matter.

Agronomic Considerations

- Pioneer [®] brand corn offers a range of both insect protection traits and proven effective seed treatments to combat both insect pests and damaging diseases that affect corn plants.
- Qrome[®] provides above and below ground insect protection (European Corn Borer and Corn Rootworm).
- Optimum® AcreMax® European Corn Borer
- In addition to broad spectrum standard fungicide seed treatments, Pioneer [®] brand corn offers Lumivia [®] insecticide seed treatment which provides enhanced early season protection against yield robbing insects such as wireworm and cutworms.

Figure 1. Silage yield components. Source: Mahanna et al., 2018. Silage Zone Manual, Third Edition.

Corn Silage Summary

 Corn silage yield and quality are determined by the interaction of:

G x **E** x **M** (Genetics, Environment, Management)

- Silage yield is primarily driven by biomass (plant height at the ear) and starch content.
 - Starch (grain) typically contributes half of silage dry matter yield.
 - Silage yield is influenced by harvest timing, seed genetics and planting date in addition to weather, soil, and fertility.
- Feed quality is primarily driven by starch content and secondly by fibre digestibility.

Accumulated CHU: May 15 - September 15

Prairie Region: 10 Year Average 2012 - 2021

Figure 2. 10-year average corn heat unit accumulation (2012-2021) for Western Canada. Map produced by Weather Innovations Consulting LP.

Liberty*, LibertyLink* and the Water Droplet Design are trademarks of BASF. Roundup Ready* is a registered trademark used under license from Monsanto Company. Agrisure® is a trademark of, andvused under license from Syngenta Group Company. Agrisure® technology incorporated into these seeds is commercialized under a license from Syngenta Grop Protection AG. Grome® products are approved for cultivation in the U.S. and Canada. They have also received approval in a number of importing countries, most recently China. For additional information about the status of regulatory authorizations, visit http://www.biotradestatus.com/